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Preface

This book describes the sampling and statistical methods used most often by
behavioral ecologists. We define behavioral ecology broadly to include behav-
ior, ecology and such related disciplines as fisheries, wildlife, and environ-
mental physiology. Most researchers in these areas have studied basic statistical
methods, but frequently have trouble solving their design or analysis problems
despite having taken these courses. The general reason for these problems is
probably that introductory statistics courses are intended for workers in many
fields, and each field presents a special, and to some extent unique, set of prob-
lems. A course tailored for behavioral ecologists would necessarily contain
much material of little interest to students in other fields.

The statistical problems that seem to cause behavioral ecologists the
most difficulty can be divided into several categories.

1. Some of the most difficult problems faced by behavioral ecologists
attempting to design a study or analyze the resulting data fall between
statistics – as it is usually taught – and biology. Examples include how
to define the sampled and target populations, the nature and purpose
of statistical analysis when samples are collected nonrandomly, and
how to avoid pseudoreplication.

2. Some methods used frequently by behavioral ecologists are not covered
in most introductory texts. Examples include survey sampling,
capture–recapture, and distance sampling.

3. Certain concepts in statistics seem to need reinforcement even though
they are well covered in many texts. Examples include the rationale of
statistical tests, the meaning of confidence intervals, and the interpreta-
tion of regression coefficients.

4. Behavioral ecologists encounter special statistical problems in certain
areas including index methods, detecting habitat ‘preferences’, and
sampling behavior.
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5. A few mathematical methods of use to behavioral ecologists are
generally not covered in introductory methods courses. Examples
include the statistical properties of ratios and other nonlinear combina-
tions of random variables, rules of expectation, the principle of
maximum likelihood estimation, and the Taylor series approximation.

This book is an attempt to address problems such as those above adopt-
ing the special perspective of behavioral ecology. Throughout the book,
our general goals have been that behavioral ecologists would find the
material relevant and that statisticians would find the treatment rigorous.
We assume that readers will have taken one or more introductory statistics
courses, and we view our book as a supplement, rather than a substitute, for
these courses.

The book is based in part on our own research and consulting during the
past 20 years. Before writing the text, however, we undertook a survey of
the methods used by behavioral ecologists. We did this by examining every
article published during 1990 in the journals Behavioral Ecology and
Sociobiology, Animal Behavior, Ecology, and The Journal of Wildlife
Management and all the articles on behavior or ecology published in
Science and Nature. We tabulated the methods in these articles and used the
results frequently in deciding what to include in the book and how to
present the examples.

Chapter One describes statistical objectives of behavioral ecologists empha-
sizing how the statistical and nonstatistical aspects of data analysis reinforce
each other. Chapter Two describes estimation techniques, introducing several
statistical methods that are useful to behavioral ecologists. It is more
mathematical than the rest of the book and can be skimmed by readers less
interested in such methods. Chapter Three discusses tests and confidence inter-
vals concentrating on the rationale of each method. Methods for ratios are dis-
cussed as are sample size and power calculations. The validity of t-tests when
underlying data are non-normal is discussed in detail, as are the strengths and
weaknesses of nonparametric tests. Chapter Four discusses survey sampling
methods in considerable detail. Different sampling approaches are described
graphically. Sample selection methods are then discussed followed by a
description of multistage sampling and stratification. Problems caused by non-
random sample selection are examined in detail. Chapter Five discusses regres-
sion methods emphasizing conceptual issues and how to use computer
software to carry out general linear models’ analysis.

The first five Chapters cover material included in the first few courses
in statistical methods. In these Chapters, we concentrate on topics that
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behavioral ecologists often have difficulty with, assuming that the reader
has already been exposed to the basic methods and ideas. The subsequent
Chapters discuss topics that are generally not covered in introductory
statistics courses. We introduce each topic and provide suggestions for
additional reading. Chapter Six discusses the difficult problem of pseudo-
replication, introducing an approach which we believe might help to resolve
the controversies in this area and focus the discussions on biological, rather
than statistical, issues. Chapter Seven discusses special statistical problems
that arise in sampling behavior. Chapter Eight discusses estimating and
monitoring abundance, particularly by index methods. Chapter Nine dis-
cusses capture–recapture methods, while Chapter Ten emphasizes the
estimation of survival. Chapter Eleven discusses resource selection and
Chapter Twelve briefly mentions some other topics of interest to behavioral
ecologists with suggestions for additional reading.

Appendix One gives a detailed explanation of frequently used statistical
methods, whilst Appendix Two contains a set of tables for reference. They
are included primarily so that readers can examine the formulas in more
detail to understand how analyses are conducted. We have relegated this
material to an appendix because most analyses are carried out using statis-
tical packages and many readers will not be interested in the details of the
analysis. Nonetheless, we encourage readers to study the material in the
appendices as doing so will greatly increase one’s understanding of the
analyses. In addition, some methods (e.g., analysis of stratified samples) are
not available in many statistical packages but can easily be carried out by
readers able to write simple computer programs. Appendix Three contains
detailed notes on derivation of the material in Appendix One.

This book is intended primarily for researchers who wish to use sampling
techniques and statistical analysis as a tool but who do not have a deep
interest in the underlying mathematical principles. We suspect, however,
that many biologists will be interested in learning more about the statistical
principles and techniques used to develop the methods we present.
Knowledge of this material is of great practical use because problems arise
frequently which can be solved readily by use of these methods, but which
are intractable without them. Basic principles of expectation (by which
many variance formulas may be derived) and use of the Taylor series
approximation (by which nearly all the remaining variance formulas
needed by behavioral ecologists may be derived) are examples of these
methods. Maximum likelihood estimation is another statistical method
that can be presented without recourse to complex math and is frequently
of value to biologists. We introduce these methods in Chapter Two and
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illustrate their use periodically in the rest of the book. These sections,
however, can be skipped without compromising the reader’s ability to
understand later sections of the book.

Another approach of great utility in developing a deep understanding of
the statistical methods we present is to prepare computer programs that
carry out calculations and simulations. We encourage readers to learn some
programming in an elementary language such as Basic or the languages
included in many data bases or statistical packages and then to write short
programs to investigate the material we present. Several opportunities for
such projects are identified in the text, and all of the examples we mention
are listed in the Index under the heading ‘Computer programming, exam-
ples’. We have found that preparing programs in this manner not only
ensures that one understands the fine structure of the analysis, but in addi-
tion frequently leads one to think much more deeply about how the statisti-
cal analysis helps us understand natural systems. Such efforts also increase
one’s intuition about whether studies can be carried out successfully given
the resources available and about how to allocate resources among different
segments of the study. Furthermore, data management, while not discussed
in this book, frequently consumes far more time during analysis than carry-
ing out the actual statistical tests, and in many studies is nearly impossible
without recourse to computer programs. For all of these reasons, we
encourage readers strongly to learn a programming language.

The authors thank the staff of Cambridge University Press for their
assistance with manuscript preparation, especially our copy editor, Sarah
Price. Much of the book was written while the senior author was a member
of the Zoology Department at Ohio State University. He acknowledges the
many stimulating discussions of biological statistics with colleagues there,
especially Susan Earnst, Tom Grubb, and John Harder and their graduate
students. JB also acknowledges his intellectual debt to Douglas S. Robson
of Cornell University who introduced him to sampling techniques and
other branches of statistics and from whom he first learned the value of
integrating statistics and biology in the process of biological research.
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1
Statistical analysis in behavioral ecology

1.1 Introduction

This Chapter provides an overview of how statistical problems are formu-
lated in behavioral ecology. We begin by identifying some of the difficulties
that behavioral ecologists face in deciding what population to study. This
decision is usually made largely on nonstatistical grounds but a few statisti-
cal considerations are worth discussing. We then introduce the subject of
making inferences about the population, describing objectives in statistical
terms and discussing accuracy and the general ways used to measure it.
Finally, we note that statistical inferences do not necessarily apply beyond
the population sampled and emphasize the value of drawing a sharp
distinction between the sampled population and larger populations of
interest.

1.2 Specifying the population

Several conflicting goals influence decisions about how large and variable
the study population should be. The issues are largely nonstatistical and
thus outside the scope of this book, but a brief summary, emphasizing sta-
tistical issues insofar as they do occur, may be helpful.

One issue of fundamental importance is whether the population of inter-
est is well defined. Populations are often well defined in wildlife monitoring
studies. The agencies carrying out such studies are usually concerned with a
specific area such as a State and clearly wish to survey as much of the area
as possible. In observational studies, we would often like to collect the data
throughout the daylight hours – or some portion of them – and throughout
the season we are studying.

Sampling throughout the population of interest, however, may be
difficult for practical reasons. For example, restricting surveys to roads and
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observations to one period of the day may permit the collection of a larger
sample size. A choice then arises between ‘internal and external validity’. If
surveys are restricted to roadsides, then smaller standard errors may be
obtained, thereby increasing ‘internal validity’, but we will worry that
trends along the roads may differ from trends for the entire area, thus
reducing ‘external validity’. A similar problem may occur if observations
are restricted to certain times of day or portions of the season. When the
population of interest is well defined, as in these cases, then the trade-off

between internal and external validity is conceptually straightforward,
though deciding how to resolve it in specific cases may be difficult.

When there is no single well-defined population of interest, then the
situation is a little more complex conceptually. Consider the following
example. Suppose we are investigating the relationship between dominance
and time spent watching for predators in groups of foraging animals.
Dominant individuals might spend more time foraging because they
assume positions of relative security from predators. Alternatively, they
might spend less time foraging because they obtain better foraging posi-
tions and satisfy their nutritional requirements more quickly. Suppose that
we can study six foraging groups in one woodlot, or two groups in each of
three woodlots. Sampling three woodlots might seem preferable because
the sampled population would then be larger and presumably more repre-
sentative of the population in the general area. But suppose that dominant
individuals spend more time foraging in some habitats and less time for-
aging in others. With three woodlots – and perhaps three habitats – we
might not obtain statistically significant differences between the foraging
time of dominants and subdominants due to the variation among wood-
lots. We might also not have enough data within woodlots to obtain statisti-
cally significant effects. Thus, we would either reach no conclusion or, by
averaging over woodlots, incorrectly conclude that dominance does not
affect vigilance time. This unfortunate outcome might be much less likely if
we confined sampling to a single woodlot. Future study might then show
that the initial result was habitat dependent.

In this example, there is no well-defined target population about which
we would like to make inferences. The goal is to understand an interesting
process. Deciding how general the process is can be viewed as a different
goal, to be undertaken in different studies. Thus, while the same trade-off

between internal and external validity occurs, there is much less of a
premium on high external validity. If the process occurs in the same way
across a large population, and if effort can be distributed across this
population without too much reduction in sample sizes, due to logistic
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costs, then having a relatively large sampled population may be worthwhile.
But if such a plan increases logistic costs, or if the process varies across the
population, then restricting the population in space, time or other ways
may be preferable.

Studies conducted in one location or within 1 year are sometimes crit-
icized on the grounds that the sample size is 1. In some sense, however,
nearly all studies have a sample size of 1 because they are carried out in one
county, state, or continent. Frequently, those arguing for a distribution of
the study across two or more areas or years are really arguing that two or
more complete studies should have been conducted. They want enough
data to determine whether the results hold in each area or year. This is
desirable of course. Two studies are nearly always better than one; but, if
the sample size is only sufficient to obtain one good estimate, then little may
be gained, and much lost, by spreading the effort over a large area or long
period of time.

Superpopulations

Sometimes a data set is collected without any formal random selection –
this occurs in many fields. In behavioral ecology, it is most likely when the
study is conducted within a well-defined area and all individuals (typically
plants or animals) within the boundaries of the area are measured. It might
be argued that in such cases we have taken a census (i.e., measured all
members) of the population so that calculation of standard errors and sta-
tistical tests is neither needed nor appropriate. This view is correct if our
interest really is restricted to individuals in the study area at the time of the
study. In the great majority of applications, however, we are really inter-
ested in an underlying process, or at least a much larger population than the
individuals we studied.

In sampling theory, a possible point of view is that many factors not under
our control operate in essentially a random manner to determine what indi-
viduals will be present when we do our study, and that the individuals present
can thus be regarded as a random sample of the individuals that might have
been present. Such factors might include weather conditions, predation
levels, which migrants happened to land in the area, and so on. In sampling
theory, such hypothetical populations are often called ‘superpopulations’
(e.g., Cochran 1977 p. 158; Kotz and Johnson 1988). We assume that our
sample is representative of the superpopulation and thus that statistical
inferences apply to this larger group of individuals. If the average measure-
ment from males, for example, is significantly larger than the average from
females, then we may legitimately conclude that the average for all males that
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might have been present in our study area probably exceeds the average for all
females. If the difference is not significant, then the data do not support any
firm conclusion about which sex has the larger average value. Note that
asserting the existence of a superpopulation, describing the individuals it
contains, and modeling its relation to our sample require biological or
ecological arguments as much as or more than statistical arguments.

The superpopulation concept can also be explained by reference to an
‘assignment process’. The word assignment refers to the underlying biolog-
ical process, not to randomization carried out by the investigator. To illus-
trate the concept, imagine that we are comparing survival rates of males
and females. We might view the individuals of each sex as being ‘assigned’
to one of two groups at the end of the study, alive and dead, and the process
may be viewed as having random elements such as whether a predator
happens to encounter a given individual. The question is whether members
of one sex are more likely than the other to be assigned to the ‘alive’ group.
The superpopulation is then the set of possible outcomes and inferences
apply to the underlying probabilities of survival for males and females. This
rationale is appealing because it emphasizes our interest in the underlying
process, rather than in the individuals who happened to be present when we
conducted the study.

Justifying statistical analysis by invoking the superpopulation concept
might be criticized on the basis that there is little point in making inferences
about a population if we cannot clearly describe what individuals comprise
the population. There are two responses to this criticism. First, there is an
important difference between deciding whether sample results might have
arisen by chance and deciding how widely conclusions from a study apply.
In the example above, if the sample results are not significantly different
then we have not shown that survival rates are sex specific for any popula-
tion (other than the sample we measured). The analysis thus prevents our
making unwarranted claims. Second, describing the sampled population,
in a particular study, is often not of great value even if it is possible. The
main value of describing the sampled population is that we can then gener-
alize the results from our sample to this population. But in biological
research, we usually want to extend our findings to other areas, times, and
species, and clearly the applicability of our results to these populations can
only be determined by repeating the study elsewhere. Thus, the generality of
research findings is established mainly by repeating the study, not by pre-
cisely demarcating the sampled population in the initial study.

Statisticians tend to view superpopulations as an abstraction, as opposed
to a well-defined population about which inferences are to be made.
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Behavioral ecologists thus must use care when invoking this concept to
ensure that the rationale is reasonable. For example, one would probably
not measure population size in a series of years and then declare that the
years could be viewed as a random sample from a superpopulation of years.
Population size at one time often depends strongly on population size in
recent years so consecutive years could not legitimately be viewed as an
independent sample. Nonetheless, in many studies in the field of behavioral
ecology we can imagine much larger populations which we suspect our
samples are representative of and to which we would like to make infer-
ences. In such cases statistical analysis is appropriate because it helps guard
against unwarranted conclusions.

1.3 Inferences about the population

Objectives

Although biologists study a vast array of species, areas, behaviors, and so
on, most of the parameters estimated may be assigned to a small number of
categories. Most quantities of interest in behavioral ecology are of two
types: (1) means, proportions, or quantities derived from them, such as
differences; and (2) measures of association such as correlation and regres-
sion coefficients and the quantities based on them such as regression equa-
tions. Estimates of these quantities are often called ‘point estimates’. In
addition, we usually want an estimate of accuracy such as a standard error.
A point estimate coupled with an estimate of accuracy can often be used to
construct a confidence interval or ‘interval estimate’, an interval within
which we are relatively confident the true parameter value lies. Frequent use
is made later in the book of the phrase ‘point and interval estimates’.

Definitions

One of the first steps in obtaining point or interval estimates is to clearly
understand the statistical terms. In behavioral ecology, the connection
between the terms and the real problem is sometimes surprisingly difficult
to specify, as will become clear later in the book. Here we introduce a few
terms and provide several examples of how they would be defined in
different studies.

The quantity we are trying to estimate is referred to as a parameter.
Formally, a parameter is any numerical characteristic of a population. In
estimating density, the parameter is actual density in the sampled popula-
tion. In estimating change in density, the parameter is change in the actual
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densities. The term random variable refers to any quantity whose numerical
value depends on which sample we happen to obtain by random selection.
The sample mean is thus a random variable as is any quantity calculated
from the sample such as a standard deviation or standard error.

A numerical constant is typically a known quantity that is not of direct
interest and whose value does not depend on the particular sample selected.
For example, if we estimate density per m2 but then multiply the estimate by
10,000 to obtain density per hectare, then the 10,000 is a numerical con-
stant. On the other hand, a parameter is an unknown constant whose value
does not depend on the particular sample selected but is of direct interest.

In any analysis, one must identify the units in the sample and the
measurements taken on each unit. Thus, we may define the sample mean,
with respect to some variable as 5 Syi/n where n is the sample size and yi,
i51,...,n are the measurements. In this book, we generally follow the tradi-
tion of survey sampling in which a distinction is made between the popula-
tion units and the variables measured on each unit in the sample.
Population units are the things we select during random sampling; variables
are the measurements we record.

If we capture animals and record their sex, age, and mass, then the
population unit is an animal and the variables are sex, age, and mass. If we
record behavioral measurements on each of several animals during several
1-h intervals, then the population unit is an animal watched for 1 h, an
‘animal-hour’, and the variables are the behavioral data recorded during
each hour of observation. In time-activity sampling, we often record
behavior periodically during an observation interval. The population unit
is then an ‘animal-time’, and the variables are the behaviors recorded. In
some studies, plants or animals are the variables rather than the population
units. For example, if we record the number of plants or the number of
species in each of several plots, then the population unit is a plot, and the
variable is ‘number of plants’ or ‘number of species’. In most studies
carried out by behavioral ecologists, the population unit is: (1) an animal,
plant, or other object; (2) a location in space such as a plot, transect, or
dimensionless point; (3) a period or instant of time; or (4) a combination
involving time such as an animal watched for 1 h or a location sampled at
each of several times.

Nearly all sampling plans assume that the population units are nonover-
lapping. Usually this can be accomplished easily in behavioral ecology. For
example, if the population units are plots, then the method of selecting the
plots should ensure that no two plots in the sample will overlap each other.
In some sampling plans, the investigator begins by dividing the population

y
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units into groups in such a way that each population unit is in one and only
one group. Subdivision in this manner is called a partition of the popula-
tion. Sample selection is also usually assumed to be without replacement
unless stated otherwise. Sampling without replacement implies that a unit
cannot be selected twice for the sample, while units could be included two
or more times when sampling is with replacement. The names are derived
from the practice of physically removing objects from the population, as in
drawing balls from an urn and then replacing them or not replacing them.

Application of the ‘population unit/variable’ approach may seem
difficult at first in estimating proportions. If we select ‘n’ plants and record
the proportion that have flowers, what is ‘the variable’? Statisticians usually
approach such problems by defining the population unit as an individual
and the variable as 0 if the individual does not have the trait or condition of
interest and 1 if it does. The proportion is thus the mean of the variables in
the sample. For example, let yi refer to the i th plant (i51,...,n) and equal 0 if
the plant does not have flowers and 1 if it does have flowers. Then the pro-
portion may be written as Syi/n. This principle – that proportions may be
thought of as means (of 0s and 1s) – is useful in several contexts. For
example, it shows that all results applicable to means in general also apply
to proportions (though proportions do have certain properties – described
in later Chapters – not shared by all means). Notice that it matters whether
we use 0 to mean ‘a plant without flowers’ or ‘a plant with flowers’. The
term ‘success’ is commonly used to indicate which category is identified by a
1. The other category is often called ‘failure’. In our example, a ‘success’
would mean a plant with flowers.

In most studies we wish to estimate many different quantities, and the
definitions of population units and variables may change as we calculate
new estimates. For example, suppose we wish to estimate the average
number of plants/m2 and seeds/plant. We use plots to collect plants and
then count the number of seeds on each plant. In estimating the average
number of plants per plot, the population unit is a plot, and the variable is
the number of plants (i.e., yi5the number of plants in the i th plot). In esti-
mating the number of seeds per plant, the population unit is a plant, and
the variable is the number of seeds (i.e., yi5the number of seeds on the i th

plant).
The population is the set of all population units that might be selected for

inclusion in the sample. The population has the same ‘dimensions’ as the
population units. If a population unit is an animal watched for an observa-
tion interval, then, by implication, the population has two dimensions, one
for the animals that might be selected, the other for the times that might be
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selected. The population in this case might be envisaged as an array, with
animals that might be selected listed down the side and times that might be
selected listed across the top. Cells in the array thus represent population
units and the entries in them are the variables. This approach of visualizing
the population as a two-dimensional array will be used extensively in our
discussions of ‘Survey sampling methods’ (Chapter Four) and ‘Pseudo-
replication’ (Chapter Six).

Biologists often think of the species as ‘the population’ they are studying.
The statistical population, however, is the set of population units that
might enter the sample. If the population units are plots (in which we count
animals for instance), then the statistical population is a set of plots. If the
population unit is a trap left open for a day, then the statistical population is
the set of trap-days that might enter the sample, not the animals that we
might catch in them. This is just a matter of semantics, but confusion is
sometimes avoided by distinguishing between statistical and biological
populations.

Measures of error

The term error, in statistics, has approximately the same meaning as it does
in other contexts: an estimate likely to be far from the true value has large
error and one likely to be close to the true value has small error. Two kinds
of error, sampling error and bias, are usually distinguished. The familiar
‘bull’s eye’ analogy is helpful to explain the difference between them.
Imagine having a quantity of interest (the bull’s eye) and a series of esti-
mates (individual bullets lodged on the target). The size of the shot pattern
indicates sampling error and the difference, if any, between the center of the
shot pattern and the bull’s eye indicates bias. Thus, sampling error refers to
the variation from one sample to another; bias refers to the difference (pos-
sibly zero) between the mean of all possible estimates and the parameter.

Notice that the terms sampling error and bias refer to the pattern that
would be observed in repeated sampling, not to a single estimate. We use the
term estimator for the method of selecting a sample and analyzing the
resulting data. Sampling error and bias are said to be properties of the esti-
mator (e.g., we may say the estimator is biased or unbiased). Technically, it
is not correct to refer to the bias or sampling error of a single estimate.
More important than the semantics, however, is the principle that measures
of error reveal properties of the set of all possible estimates. They do not
automatically inform us about how close the single estimate we obtain in a
real study is to the true value. Such inferences can be made but the reason-
ing is quite subtle. This point, which must be grasped to understand the
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rationale of statistical inference, is discussed more in Chapter Three, ‘Tests
and confidence intervals’.

The quantity most widely used to describe the magnitude of sampling
error is called the standard error of the estimate. One of the remarkable
properties of modern statistical methods is that standard errors – a measure
of the variation that would occur in repeated sampling – can usually be
estimated from a single sample. The effects of sampling error can also
be described by the coefficient of variation (CV) which expresses the
standard error as a percentage of the estimate [i.e., CV5(standard
error/estimate)3100%]. Calculation of CV values facilitates comparison
of estimates, especially of quantities measured on very different scales. For
example, an investigator might report that all the CV values were less than
20%. Sampling error is also sometimes measured by the variance of the esti-
mate, which is the square of the standard error.

Three sources of bias may be distinguished: selection bias, measurement
bias, and statistical bias. Selection bias may occur when some units in the
population are more likely to be selected than others or are selected but not
measured (but the investigator is using a procedure which assumes equally
likely selection probabilities). Measurement bias is the result of systematic
recording errors. For example, if we are attempting to count all individuals
in plots but usually miss some of those present, then our counts are subject
to measurement bias. Note that measurement errors do not automatically
cause bias. If positive and negative errors tend to balance, then the average
value of the error in repeated sampling might be zero, in which case no
measurement bias is present. Statistical bias arises as a result of the pro-
cedures used to analyze the data and the statistical assumptions that are
made.

Most statistical textbooks do not discuss selection and measurement bias
in much detail. In behavioral ecology, however, it is often unwise to ignore
these kinds of error. Selection of animals for study must often be done
using nonrandom sampling, so selection bias may be present. In estimating
abundance, we often must use methods which we know do not detect every
animal. Many behavioral or morphological measurements are difficult to
record accurately, especially under field conditions.

The statistical bias of most commonly used statistical procedures is
either zero or negligible, a condition we refer to as ‘essentially unbiased’,
meaning that the bias, while not exactly equal to zero, is not of practical
importance. When using newer statistical procedures, especially ones devel-
oped by the investigator, careful study should be given to whether statistical
bias exists. When estimates are biased, then upper bounds must be placed
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on the size of the bias or the estimates are of little value. This is often possi-
ble using analytical methods for statistical bias. Bias caused by nonrandom
selection or measurement errors, however, usually cannot be estimated with
statistical methods, a point which has important implications for under-
standing tests and confidence intervals (see Chapter Three).

A few examples will help clarify the distinctions between sampling
error and the various types of bias. Leuschner et al. (1989) selected a
simple random sample of hunters in the southeastern United States of
America and asked them whether more tax dollars should be spent on
wildlife. The purpose was to estimate what proportion of all hunters in
the study area would answer yes to this question. Sampling error was
present in the study because different random samples of hunters would
contain different proportions who felt that tax dollars should be spent on
wildlife. Selection bias could have been present because 42% of the people
selected for the sample were unreachable, gave unusable answers, or did
not answer at all. These people might have felt differently, as a group, than
those who did answer the question. There is no reason to believe that
measurement bias was present. The authors used standard, widely
accepted methods to analyze their results, so it is unlikely that their
estimation procedure contained any serious statistical bias. Note that the
types of error are distinct from one another. Stating, as in the example
above, that no measurement or statistical bias was present in the estimates
does not reveal anything about the magnitude of sampling error or selec-
tion bias.

Otis et al. (1978) developed statistical procedures for estimating popula-
tion size when animals are captured, marked, and released, and then some
of them are recaptured one or more times. The quantity of interest was the
total number of animals in the population (assumed in these particular
models to remain constant during the study). Sampling error would occur
because the estimates depend on which animals are captured and this in
turn depends on numerous factors not under the biologists’ control.
Selection bias could occur if certain types of animals were more likely to
be captured than others (though the models allowed for certain kinds of
variation in capture probabilities). In the extreme case that some animals
are so ‘trap wary’ as to be uncapturable, these animals would never appear
in any sample. Thus, the estimator would estimate the population size of
capturable animals only and thus systematically underestimate total
population size. Measurement bias would occur if animals lost their marks
(this was assumed not to occur). The statistical procedures were new, so the
authors studied statistical bias with computer simulations. They found
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little statistical bias under some conditions, but under other conditions the
estimates were consistently too high or too low even if all required assump-
tions were met.

Two other terms commonly used to describe the different components of
error are precision and accuracy. Precision refers solely to sampling error
whereas accuracy refers to the effects of both sampling error and bias.
Thus, an estimator may be described as ‘precise but not accurate’ meaning
it has a small standard error but is biased. Accuracy is defined as the square
of the standard error plus the square of the bias and is also known as the
mean squared error of the estimator.

1.4 Extrapolation to other populations 

Statistical analysis allows us to make rigorous inferences about the statisti-
cal population but does not automatically allow us to make inferences to
any other or larger population. By ‘statistical population’ we mean the
population units that might have entered the sample. When measurements
are complex or subjective, then the scope of the statistical inferences may
also be limited to the ‘conditions of the study’, meaning any aspect of the
study that might have affected the outcome. These restrictions are often
easy to forget or ignore in behavioral ecology so here we provide a few
examples.

If we record measurements from a series of animals in a study area, then
the sampled population consists of the animals in the study area at the time
of the study and the statistical inferences apply to this set of animals. If we
carry out a manipulation involving treatments and controls, then ‘the pop-
ulation’ is the set of individuals that might have been selected and the infer-
ences apply only to this population and experiment. Inferences about
results that would have been obtained with other populations or using
other procedures may be reasonable but they are not justified by the statisti-
cal analysis. With methods that detect an unknown fraction of the individ-
uals present (i.e., index methods), inferences apply to the set of outcomes
that might have been obtained, not necessarily to the biological popula-
tions, because detection rates may vary. Attempts to identify causes in
observational studies must nearly always recognize that the statistical
analysis identifies differences but not the cause of the differences.

One sometimes hears that extrapolation beyond the sampled population
is ‘invalid’. We believe that this statement is too strong, and prefer saying
that extrapolation of conclusions beyond the sampled population must be
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based on additional evidence, and that this evidence is often largely or
entirely nonstatistical. This does not mean that conclusions about a target
population are wrong: it only means that the protection against errors
afforded by the initial statistical methods is not available and everyone
should realize that. For example, if we measure clutch size in one study area
and period of time, then the statistical analysis only justifies making infer-
ences about the birds in the study area during the study period. Yet every-
one would agree that the results tell us a good deal about likely clutch size in
nearby areas and in future or past years. The extent to which conclusions
from the study can be extrapolated to larger target populations would be
evaluated using biological information such as how clutch size varies in
space and time in the study species and other closely related species. This
distinction is often reflected in the organization of journal articles. The
Results section contains the statistical analysis, whereas analyses of how
widely the results apply elsewhere are presented in the Discussion section.
Thus, in our view, the reason for careful identification of the sampled
population and conditions of the study is not to castigate those who extrap-
olate conclusions of the study beyond this population but only to empha-
size that additional, and usually nonstatistical, rationales must be
developed for this stage of the analysis.

1.5 Summary 

Decisions about what population to study are usually based primarily on
practical, rather than statistical, grounds but it may be helpful to recog-
nize the trade-off between internal and external validity and to recognize
that studying a small population well is often preferable to studying the
largest population possible. The superpopulation concept helps explain
the role of statistical analysis when all individuals in the study area have
been measured. Point estimates of interest in behavioral ecology usually
are means or measures of association, or quantities based on them such as
differences and regression equations. The first step in calculating point
estimates is defining the population unit and variable. A two-dimensional
array representing the population is often helpful in defining the popula-
tion. Two measures of error are normally distinguished: sampling error
and bias. Both terms are defined with respect to the set of all possible
samples that might be obtained from the population. Sampling error is a
measure of how different the sample outcomes would be from each other.
Bias is the difference between the average of all possible outcomes and the
quantity of interest, referred to as the parameter. Three types of bias may
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be distinguished: selection bias, measurement bias, and statistical bias.
Most statistical methods assume the first two types are absent but this is
often not a safe assumption in behavioral ecology. Statistical inferences
provide a rigorous method for drawing conclusions about the sampled
population, but inferences to larger populations must be based on addi-
tional evidence. It is therefore useful to distinguish clearly between the
sampled population and larger target populations of interest.
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